前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇數(shù)學(xué)思維策略的基本原理范文,相信會(huì)為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。
一、從布魯納的基本結(jié)構(gòu)學(xué)說中來看數(shù)學(xué)思想方法教學(xué)所具有的重要意義
第一,懂得基本原理使得學(xué)科更容易理解。心理學(xué)認(rèn)為,“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí)”。當(dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義”,使新知識(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。
第二,學(xué)習(xí)基本原理有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記”。“學(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們?cè)谛枰臅r(shí)候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個(gè)現(xiàn)象的工具?!庇纱丝梢?,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的。
第三,學(xué)習(xí)基本原理有利于“原理和態(tài)度的遷移”。布魯納認(rèn)為,“這種類型的遷移應(yīng)該是教育過程的核心――用基本的和一般的觀念來不斷擴(kuò)大和加深知識(shí)”。曹才翰教授也認(rèn)為,“如果學(xué)生認(rèn)知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對(duì)于新學(xué)習(xí)是有利的”,“只有概括的、鞏固的和清晰的知識(shí)才能實(shí)現(xiàn)遷移”。美國(guó)心理學(xué)家賈德通過實(shí)驗(yàn)證明,“學(xué)習(xí)遷移的發(fā)生應(yīng)有一個(gè)先決條件,就是學(xué)生需先掌握原理,形成類比,才能遷移到具體的類似學(xué)習(xí)中”。學(xué)生學(xué)習(xí)數(shù)學(xué)思想、方法有利于實(shí)現(xiàn)學(xué)習(xí)遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學(xué)習(xí)質(zhì)量和數(shù)學(xué)能力。
第四,強(qiáng)調(diào)結(jié)構(gòu)和原理的學(xué)習(xí),“能夠縮小高級(jí)知識(shí)和初級(jí)知識(shí)之間的間隙”。一般地講,初等數(shù)學(xué)與高等數(shù)學(xué)的界限還是比較清楚的,特別是中學(xué)數(shù)學(xué)的許多具體內(nèi)容在高等數(shù)學(xué)中不再出現(xiàn)了,有些術(shù)語如方程、函數(shù)等在高等數(shù)學(xué)中要賦予它們以新的涵義。
二、中學(xué)數(shù)學(xué)教學(xué)內(nèi)容可分為兩個(gè)層次
中學(xué)數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為表層知識(shí),另一個(gè)稱為深層知識(shí)。表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
表層知識(shí)是深層知識(shí)的基礎(chǔ),是《教學(xué)大綱》中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識(shí)。學(xué)生只有通過對(duì)教材的學(xué)習(xí),在掌握和理解了一定的表層知識(shí)后,才能進(jìn)一步學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。
深層知識(shí)蘊(yùn)含于表層知識(shí)之中,是數(shù)學(xué)的精髓,它支撐和統(tǒng)帥著表層知識(shí)。教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí),領(lǐng)悟到深層知識(shí),才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使數(shù)學(xué)教學(xué)超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性。
那種只重視講授表層知識(shí),而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識(shí)的教學(xué),就會(huì)使教學(xué)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦。因此,數(shù)學(xué)思想、方法的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。
三、中學(xué)數(shù)學(xué)中的主要數(shù)學(xué)思想和方法
數(shù)學(xué)思想是分析、處理和解決數(shù)學(xué)問題的根本想法,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)。由于中學(xué)生認(rèn)知能力和中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的限制,只能將部分重要的數(shù)學(xué)思想落實(shí)到數(shù)學(xué)教學(xué)過程中,而對(duì)有些數(shù)學(xué)思想不宜要求過高。我們認(rèn)為,在中學(xué)數(shù)學(xué)中應(yīng)予以重視的數(shù)學(xué)思想主要有三個(gè):集合思想、化歸思想和對(duì)應(yīng)思想。其理由是:(1)這三個(gè)思想幾乎包括了全部中學(xué)數(shù)學(xué)內(nèi)容;(2)符合中學(xué)生的思維能力及他們的實(shí)際生活經(jīng)驗(yàn),易于被他們理解和掌握;(3)在中學(xué)數(shù)學(xué)教學(xué)中,運(yùn)用這些思想分析、處理和解決數(shù)學(xué)問題的機(jī)會(huì)比較多;(4)掌握這些思想可以為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下較好的基礎(chǔ)。
數(shù)學(xué)方法是分析、處理和解決數(shù)學(xué)問題的策略,這些策略與人們的數(shù)學(xué)知識(shí)、經(jīng)驗(yàn)以及數(shù)學(xué)思想掌握情況密切相關(guān)。從有利于中學(xué)數(shù)學(xué)教學(xué)出發(fā),本著數(shù)量不宜過多原則,我們認(rèn)為目前應(yīng)予以重視的數(shù)學(xué)方法有:數(shù)學(xué)模型法、數(shù)形結(jié)合法、變換法、函數(shù)法和類分法等。一般來講,中學(xué)數(shù)學(xué)中分析、處理和解決數(shù)學(xué)問題的活動(dòng)是在數(shù)學(xué)思想的指導(dǎo)下,運(yùn)用數(shù)學(xué)方法,通過一系列數(shù)學(xué)技能操作來完成的。
四、數(shù)學(xué)思想方法的教學(xué)模式
數(shù)學(xué)表層知識(shí)與深層知識(shí)具有相輔相成的關(guān)系,這就決定了它們?cè)诮虒W(xué)中的辯證統(tǒng)一性?;谏鲜稣J(rèn)識(shí),我們給出數(shù)學(xué)思想方法教學(xué)的一個(gè)教學(xué)模式:操作――掌握――領(lǐng)悟。
對(duì)此模式作如下說明:(1)數(shù)學(xué)思想、方法教學(xué)要求教師較好地掌握有關(guān)的深層知識(shí),以保證在教學(xué)過程中有明確的教學(xué)目的。(2)“操作”是指表層知識(shí)教學(xué),即基本知識(shí)與技能的教學(xué)。“操作”是數(shù)學(xué)思想、方法教學(xué)的基礎(chǔ)。(3)“掌握”是指在表層知識(shí)教學(xué)過程中,學(xué)生對(duì)表層知識(shí)的掌握。學(xué)生掌握了一定量的數(shù)學(xué)表層知識(shí),是學(xué)生能夠接受相關(guān)深層知識(shí)的前提。(4)“領(lǐng)悟”是指在教師引導(dǎo)下,學(xué)生對(duì)掌握的有關(guān)表層知識(shí)的認(rèn)識(shí)深化,即對(duì)蘊(yùn)于其中的數(shù)學(xué)思想、方法有所悟,有所體會(huì)。
1.中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的層次
中學(xué)數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為表層知識(shí),另一個(gè)稱為深層知識(shí)。表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
表層知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識(shí)。學(xué)生只有通過對(duì)教材的學(xué)習(xí),在掌握和理解了一定的表層知識(shí)后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。
深層知識(shí)蘊(yùn)含于表層知識(shí)之中,是數(shù)學(xué)的精髓,它支撐和統(tǒng)帥著表層知識(shí)。教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí),領(lǐng)悟到深層知識(shí),才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使數(shù)學(xué)教學(xué)超脫“題?!敝?,使其更富有朝氣和創(chuàng)造性。
那種只重視講授表層知識(shí),而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識(shí)的教學(xué),就會(huì)使教學(xué)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦。因此,數(shù)學(xué)思想、方法的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。
2.中學(xué)數(shù)學(xué)中的主要數(shù)學(xué)思想和方法
數(shù)學(xué)思想是分析、處理和解決數(shù)學(xué)問題的根本想法,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)。由于中學(xué)生認(rèn)知能力和中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的限制,只能將部分重要的數(shù)學(xué)思想落實(shí)到數(shù)學(xué)教學(xué)過程中,而對(duì)有些數(shù)學(xué)思想不宜要求過高。我們認(rèn)為,在中學(xué)數(shù)學(xué)中應(yīng)予以重視的數(shù)學(xué)思想主要有三個(gè):集合思想、化歸思想和對(duì)應(yīng)思想。其理由是:(1)這三個(gè)思想幾乎包攝了全部中學(xué)數(shù)學(xué)內(nèi)容;(2)符合中學(xué)生的思維能力及他們的實(shí)際生活經(jīng)驗(yàn),易于被他們理解和掌握;(3)在中學(xué)數(shù)學(xué)教學(xué)中,運(yùn)用這些思想分析、處理和解決數(shù)學(xué)問題的機(jī)會(huì)比較多;(4)掌握這些思想可以為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下較好的基礎(chǔ)。
此外,符號(hào)化思想、公理化思想以及極限思想等在中學(xué)數(shù)學(xué)中也不同程度地有所體現(xiàn),應(yīng)依據(jù)具體情況在教學(xué)中予以滲透。
3.數(shù)學(xué)思想方法的教學(xué)模式
數(shù)學(xué)表層知識(shí)與深層知識(shí)具有相輔相成的關(guān)系,這就決定了他們?cè)诮虒W(xué)中的辯證統(tǒng)一性?;谏鲜稣J(rèn)識(shí),我們給出數(shù)學(xué)思想方法教學(xué)的一個(gè)教學(xué)模式:
操作――掌握――領(lǐng)悟
對(duì)此模式作如下說明:(1)數(shù)學(xué)思想、方法教學(xué)要求教師較好地掌握有關(guān)的深層知識(shí),以保證在教學(xué)過程中有明確的教學(xué)目的;(2)“操作”是指表層知識(shí)教學(xué),即基本知識(shí)與技能的教學(xué)?!安僮鳌笔菙?shù)學(xué)思想、方法教學(xué)的基礎(chǔ);(3)“掌握”是指在表層知識(shí)教學(xué)過程中,學(xué)生對(duì)表層知識(shí)的掌握。學(xué)生掌握了一定量的數(shù)學(xué)表層知識(shí),是學(xué)生能夠接受相關(guān)深層知識(shí)的前提;(4)“領(lǐng)悟”是指在教師引導(dǎo)下,學(xué)生對(duì)掌握的有關(guān)表層知識(shí)的認(rèn)識(shí)深化,即對(duì)蘊(yùn)于其中的數(shù)學(xué)思想、方法有所悟,有所體會(huì);(5)數(shù)學(xué)思想、方法教學(xué)是循環(huán)往復(fù)、螺旋上升的過程,往往是幾種數(shù)學(xué)思想、方法交織在一起,在教學(xué)過程中依據(jù)具體情況在一段時(shí)間內(nèi)突出滲透與明確一種數(shù)學(xué)思想或方法,效果可能更好些。
初中數(shù)學(xué)的教學(xué)方法是通過分析、處理和解決數(shù)學(xué)問題的策略,這些策略與人們的數(shù)學(xué)知識(shí),經(jīng)驗(yàn)以及數(shù)學(xué)思想掌握情況密切相關(guān)。從有利于中學(xué)數(shù)學(xué)教學(xué)出發(fā),本著數(shù)量不宜過多原則,我們認(rèn)為目前應(yīng)予以重視的數(shù)學(xué)方法有:數(shù)學(xué)模型法、數(shù)形結(jié)合法、變換法、函數(shù)法和類分法等。一般講,中學(xué)數(shù)學(xué)中分析、處理和解決數(shù)學(xué)問題的活動(dòng)是在數(shù)學(xué)思想指導(dǎo)下,運(yùn)用數(shù)學(xué)方法,通過一系列數(shù)學(xué)技能操作來完成的。
第一,“懂得基本原理使得學(xué)科更容易理解”。心理學(xué)認(rèn)為“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包攝和概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí)?!碑?dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義,”即使新知識(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。
第二,有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記。”“學(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們?cè)谛枰臅r(shí)候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個(gè)現(xiàn)象的工具。”由此可見,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的。無怪乎有人認(rèn)為,對(duì)于中學(xué)生“不管他們將來從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、數(shù)學(xué)的思維方法、研究方法,卻隨時(shí)隨地發(fā)生作用,使他們受益終生?!?/p>
第一,“懂得基本原理使得學(xué)科更容易理解”。心理學(xué)認(rèn)為“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包攝和概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí)?!碑?dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義,”即新知識(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。
第二,有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記。”“學(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們?cè)谛枰臅r(shí)候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個(gè)現(xiàn)象的工具。”由此可見,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的。無怪乎有人認(rèn)為,對(duì)于中學(xué)生“不管他們將來從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、數(shù)學(xué)的思維方法、研究方法隨時(shí)隨地發(fā)生作用,使他們受益終生。”
第三,學(xué)習(xí)基本原理有利于“原理和態(tài)度的遷移”。布魯納認(rèn)為,“這種類型的遷移應(yīng)該是教育過程的核心——用基本的和一般的觀念來不斷擴(kuò)大和加深知識(shí)?!辈懿藕步淌谝舱J(rèn)為,“如果學(xué)生認(rèn)知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對(duì)于新學(xué)習(xí)是有利的,”“只有概括的、鞏固的和清晰的知識(shí)才能實(shí)現(xiàn)遷移?!泵绹?guó)心理學(xué)家賈德通過實(shí)驗(yàn)證明,“學(xué)習(xí)遷移的發(fā)生應(yīng)有一個(gè)先決條件,就是學(xué)生需先掌握原理,形成類比,才能遷移到具體的類似學(xué)習(xí)中?!睂W(xué)生學(xué)習(xí)數(shù)學(xué)思想、方法有利于實(shí)現(xiàn)學(xué)習(xí)遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學(xué)習(xí)質(zhì)量和數(shù)學(xué)能力。
二、中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的層次
中學(xué)數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為表層知識(shí),另一個(gè)稱為深層知識(shí)。表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。表層知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的以及具有較強(qiáng)操作性的知識(shí)。學(xué)生只有通過對(duì)教材的學(xué)習(xí),在掌握和理解了一定的表層知識(shí)后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。深層知識(shí)蘊(yùn)含于表層知識(shí)之中,是數(shù)學(xué)的精髓,它支撐和統(tǒng)帥著表層知識(shí)。教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí),領(lǐng)悟到深層知識(shí),才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使數(shù)學(xué)教學(xué)超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性。那種只重視講授表層知識(shí),而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識(shí)的教學(xué),就會(huì)使教學(xué)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦。因此,數(shù)學(xué)思想、方法的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。三、中學(xué)數(shù)學(xué)中的主要數(shù)學(xué)思想和方法
數(shù)學(xué)思想是分析、處理和解決數(shù)學(xué)問題的根本想法,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)。由于中學(xué)生認(rèn)知能力和中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的限制,只能將部分重要的數(shù)學(xué)思想落實(shí)到數(shù)學(xué)教學(xué)過程中,而對(duì)有些數(shù)學(xué)思想不宜要求過高。我們認(rèn)為,在中學(xué)數(shù)學(xué)中應(yīng)予以重視的數(shù)學(xué)思想主要有三個(gè):集合思想、化歸思想和對(duì)應(yīng)思想。其理由是:
(1)這三個(gè)思想幾乎包攝了全部中學(xué)數(shù)學(xué)內(nèi)容;
(2)符合中學(xué)生的思維能力及他們的實(shí)際生活經(jīng)驗(yàn),易于被他們理解和掌握;
(3)在中學(xué)數(shù)學(xué)教學(xué)中,運(yùn)用這些思想分析、處理和解決數(shù)學(xué)問題的機(jī)會(huì)比較多;
(4)掌握這些思想可以為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下較好的基礎(chǔ)。
此外,符號(hào)化思想、公理化思想以及極限思想等在中學(xué)數(shù)學(xué)中也不同程度地有所體現(xiàn),應(yīng)依據(jù)具體情況在教學(xué)中予以滲透。數(shù)學(xué)方法是分析、處理和解決數(shù)學(xué)問題的策略,這些策略與人們的數(shù)學(xué)知識(shí),經(jīng)驗(yàn)以及數(shù)學(xué)思想掌握情況密切相關(guān)。從有利于中學(xué)數(shù)學(xué)教學(xué)出發(fā),本著數(shù)量不宜過多原則,我們認(rèn)為目前應(yīng)予以重視的數(shù)學(xué)方法有:數(shù)學(xué)模型法、數(shù)形結(jié)合法、變換法、函數(shù)法和類分法等。一般講,中學(xué)數(shù)學(xué)中分析、處理和解決數(shù)學(xué)問題的活動(dòng)是在數(shù)學(xué)思想指導(dǎo)下,運(yùn)用數(shù)學(xué)方法,通過一系列數(shù)學(xué)技能操作來完成的。
四、數(shù)學(xué)思想方法的教學(xué)模式
數(shù)學(xué)表層知識(shí)與深層知識(shí)具有相輔相成的關(guān)系,這就決定了他們?cè)诮虒W(xué)中的辯證統(tǒng)一性?;谏鲜稣J(rèn)識(shí),我們給出數(shù)學(xué)思想方法教學(xué)的一個(gè)教學(xué)模式:操作——掌握——領(lǐng)悟?qū)Υ四J阶魅缦抡f明:
(1)數(shù)學(xué)思想、方法教學(xué)要求教師較好地掌握有關(guān)的深層知識(shí),以保證在教學(xué)過程中有明確的教學(xué)目的;
(2)“操作”是指表層知識(shí)教學(xué),即基本知識(shí)與技能的教學(xué)?!安僮鳌笔菙?shù)學(xué)思想、方法教學(xué)的基礎(chǔ);
(3)“掌握”是指在表層知識(shí)教學(xué)過程中,學(xué)生對(duì)表層知識(shí)的掌握。學(xué)生掌握了一定量的數(shù)學(xué)表層知識(shí),是學(xué)生能夠接受相關(guān)深層知識(shí)的前提;
(4)“領(lǐng)悟”是指在教師引導(dǎo)下,學(xué)生對(duì)掌握的有關(guān)表層知識(shí)的認(rèn)識(shí)深化,即對(duì)蘊(yùn)于其中的數(shù)學(xué)思想、方法有所悟,有所體會(huì);
(5)數(shù)學(xué)思想、方法教學(xué)是循環(huán)往復(fù)、螺旋上升的過程,往往是幾種數(shù)學(xué)思想、方法交織在一起,在教學(xué)過程中依據(jù)具體情況在一段時(shí)間內(nèi)突出滲透與明確一種數(shù)學(xué)思想或方法,效果可能更好些。
【摘要】教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí),領(lǐng)悟到深層知識(shí),才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使數(shù)學(xué)教學(xué)超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性。
【關(guān)鍵詞】數(shù)學(xué)思想教學(xué)方法探討
參考文獻(xiàn):
[1]布魯納.教育過程.上海人民出版社.
【關(guān)鍵詞】中學(xué)數(shù)學(xué) 思想方法 教學(xué)研究
新課程改革實(shí)施以來,教育理念、教學(xué)方式、評(píng)價(jià)制度等,都有了喜人的變化。但對(duì)于更加“內(nèi)容”的東西,如數(shù)學(xué)思想方法的滲透、數(shù)學(xué)文化的伸張、數(shù)學(xué)思維的拓展等等。我們關(guān)注得還不夠?!皵?shù)學(xué)是思維的體操”“形式”的改良能讓我們的數(shù)學(xué)變得富有趣味,更加接近學(xué)生的學(xué)習(xí)心理,讓學(xué)生樂學(xué),但是,數(shù)學(xué)教學(xué)的終極目標(biāo)是要促進(jìn)學(xué)習(xí)思維發(fā)展,而唯有“思想方法、文化、思維”等才是數(shù)學(xué)的本質(zhì),所以,我們更應(yīng)追求“內(nèi)容”上的到位。在這里,主要談?wù)剶?shù)學(xué)思想方法的滲透。任何一門學(xué)科在其發(fā)生發(fā)展過程中,都將逐步形成一套研究問題的思想方法,數(shù)學(xué)也不例外。那么何謂數(shù)學(xué)思想方法?狹義上講,數(shù)學(xué)思想方法研究的對(duì)象是數(shù)學(xué)本身的論證、運(yùn)算以及應(yīng)用的思想、方法和手段。廣義上講,除了上述內(nèi)容外,數(shù)學(xué)思想方法研究的對(duì)象還包括數(shù)學(xué)的對(duì)象、性質(zhì)、特征、作用及其產(chǎn)生發(fā)展的規(guī)律。
隨著數(shù)學(xué)教育改革的不斷深入,關(guān)于“數(shù)學(xué)思想方法”的探索已引起了數(shù)學(xué)教育工作者的關(guān)注。過去,我們?cè)诮虒W(xué)中只注意具體的解題技巧、解題程序和方法,而忽略數(shù)學(xué)思想方法的教學(xué),這在以“反復(fù)做題,總結(jié)套路,歸納成型,多題一解”為特征的題海戰(zhàn)術(shù)中表現(xiàn)得尤為突出。為改變這種狀況,本文試圖通過學(xué)習(xí)與思考,并聯(lián)系自己的教學(xué)實(shí)踐,淺談中學(xué)數(shù)學(xué)思想方法及其教學(xué)。思想是數(shù)學(xué)的靈魂,要置數(shù)學(xué)思想于數(shù)學(xué)教育的中心位置。所謂數(shù)學(xué)思想方法,就是數(shù)學(xué)研究活動(dòng)中解決問題的根本想法,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí),也是在對(duì)數(shù)學(xué)知識(shí)和方法作進(jìn)一步認(rèn)識(shí)和概括的基礎(chǔ)上形成的一般性觀點(diǎn)。
一、數(shù)學(xué)思想方法教學(xué)的心理學(xué)意義
美國(guó)心理學(xué)家布魯納認(rèn)為,“不論我們選教什么學(xué)科,務(wù)必使學(xué)生理解該學(xué)科的基本結(jié)構(gòu)?!彼^基本結(jié)構(gòu)就是指“基本的、統(tǒng)一的觀點(diǎn),或者是一般的、基本的原理?!薄皩W(xué)習(xí)結(jié)構(gòu)就是學(xué)習(xí)事物是怎樣相互關(guān)聯(lián)的?!睌?shù)學(xué)思想與方法為數(shù)學(xué)學(xué)科的一般原理的重要組成部分。下面從布魯納的基本結(jié)構(gòu)學(xué)說中來看數(shù)學(xué)思想、方法教學(xué)所具有的重要意義。
(一)“懂得基本原理使得學(xué)科更容易理解”。心理學(xué)認(rèn)為“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包括和概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí)?!碑?dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義?!奔词剐轮R(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。
(二)有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記?!薄皩W(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們?cè)谛枰臅r(shí)候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個(gè)現(xiàn)象的工具。”由此可見,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的。無怪乎有人認(rèn)為,對(duì)于中學(xué)生“不管他們將來從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神,數(shù)學(xué)的思維方法、研究方法,才能隨時(shí)隨地發(fā)生作用,使他們受益終生?!?/p>
(三)學(xué)習(xí)基本原理有利于“原理和態(tài)度的遷移”。布魯納認(rèn)為,“這種類型的遷移應(yīng)該是教育過程的核心――用基本的和一般的觀念來不斷擴(kuò)大和加深知識(shí)。”曹才翰教授也認(rèn)為,“如果學(xué)生認(rèn)知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對(duì)于新學(xué)習(xí)是有利的?!薄爸挥懈爬ǖ?、鞏固的和清晰的知識(shí)才能實(shí)現(xiàn)遷移。”美國(guó)心理學(xué)家賈德通過實(shí)驗(yàn)證明,“學(xué)習(xí)遷移的發(fā)生應(yīng)有一個(gè)先決條件,就是學(xué)生需先掌握原理,形成類比,才能遷移到具體的類似學(xué)習(xí)中?!睂W(xué)生學(xué)習(xí)數(shù)學(xué)思想、方法有利于實(shí)現(xiàn)學(xué)習(xí)遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學(xué)習(xí)質(zhì)量和數(shù)學(xué)能力。
(四)強(qiáng)調(diào)結(jié)構(gòu)和原理的學(xué)習(xí),“能夠縮挾高級(jí)知識(shí)和初級(jí)知識(shí)之間的間隙?!币话愕刂v,初等數(shù)學(xué)與高等數(shù)學(xué)的界限還是比較清楚的,特別是中學(xué)數(shù)學(xué)的許多具體內(nèi)容在高等數(shù)學(xué)中不再出現(xiàn)了,有些術(shù)語如方程、函數(shù)等在高等數(shù)學(xué)中要賦予它們以新的含義。而在高等數(shù)學(xué)中幾乎全部保留下來的只有中學(xué)數(shù)學(xué)思想和方法以及與其關(guān)系密切的內(nèi)容,如集合、對(duì)應(yīng)等。因此,數(shù)學(xué)思想、方法是聯(lián)結(jié)中學(xué)數(shù)學(xué)與高等數(shù)學(xué)的一條紅線。
二、中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的層次需要數(shù)學(xué)思想
中學(xué)數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為表層知識(shí),另一個(gè)稱為深層知識(shí)。表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
(一)表層知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識(shí)。學(xué)生只有通過對(duì)教材的學(xué)習(xí),在掌握和理解了一定的表層知識(shí)后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。
(二)深層知識(shí)蘊(yùn)含于表層知識(shí)之中,是數(shù)學(xué)的精髓,它支撐和統(tǒng)帥著表層知識(shí)。教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí),領(lǐng)悟到深層知識(shí),才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使數(shù)學(xué)教學(xué)超脫“題海”之苦,使其更富有朝氣和創(chuàng)造性。
(三)那種只重視講授表層知識(shí),而不注重滲透數(shù)學(xué)思想、方法的教學(xué),是不完備的教學(xué),它不利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略表層知識(shí)的教學(xué),就會(huì)使教學(xué)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦。因此,數(shù)學(xué)思想、方法的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。
三、中學(xué)數(shù)學(xué)中的主要數(shù)學(xué)思想和方法
(一)數(shù)學(xué)思想是分析、處理和解決數(shù)學(xué)問題的根本想法,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)。由于中學(xué)生認(rèn)知能力和中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的限制,只能將部分重要的數(shù)學(xué)思想落實(shí)到數(shù)學(xué)教學(xué)過程中,而對(duì)有些數(shù)學(xué)思想不宜要求過高。我們認(rèn)為,在中學(xué)數(shù)學(xué)中應(yīng)予以重視的數(shù)學(xué)思想主要有三個(gè):集合思想、化歸思想和對(duì)應(yīng)思想。其理由是:(1)這三個(gè)思想幾乎包攝了全部中學(xué)數(shù)學(xué)內(nèi)容;(2)符合中學(xué)生的思維能力及他們的實(shí)際生活經(jīng)驗(yàn),易于被他們理解和掌握;(3)在中學(xué)數(shù)學(xué)教學(xué)中,運(yùn)用這些思想分析、處理和解決數(shù)學(xué)問題的機(jī)會(huì)比較多;(4)掌握這些思想可以為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下較好的基礎(chǔ)。
(二)此外,符號(hào)化思想、公理化思想以及極限思想等在中學(xué)數(shù)學(xué)中也不同程度地有所體現(xiàn),應(yīng)依據(jù)具體情況在教學(xué)中予以滲透。
數(shù)學(xué)方法是分析、處理和解決數(shù)學(xué)問題的策略,這些策略與人們的數(shù)學(xué)知識(shí),經(jīng)驗(yàn)以及數(shù)學(xué)思想掌握情況密切相關(guān)。從有利于中學(xué)數(shù)學(xué)教學(xué)出發(fā),本著數(shù)量不宜過多原則,我們認(rèn)為目前應(yīng)予以重視的數(shù)學(xué)方法有:數(shù)學(xué)模型法、數(shù)形結(jié)合法、變換法、函數(shù)法和類分法等。一般講,中學(xué)數(shù)學(xué)中分析、處理和解決數(shù)學(xué)問題的活動(dòng)是在數(shù)學(xué)思想指導(dǎo)下,運(yùn)用數(shù)學(xué)方法,通過一系列數(shù)學(xué)技能操作來完成的。
(三)數(shù)學(xué)思想方法的教學(xué)模式。數(shù)學(xué)表層知識(shí)與深層知識(shí)具有相輔相成的關(guān)系,這就決定了他們?cè)诮虒W(xué)中的辯證統(tǒng)一性?;谏鲜稣J(rèn)識(shí),我們給出數(shù)學(xué)思想方法教學(xué)的一個(gè)教學(xué)模式:
關(guān)鍵詞:排列組合;求解策略
每年高考中,排列組合的應(yīng)用題都會(huì)以選擇或填空題形式出來。題目不多,主要考查兩個(gè)基本原理、排列組合概念及基本運(yùn)算。但其思考方法獨(dú)特,求解思維新穎,解題中極易出現(xiàn)“重復(fù)”或“遺漏”的問題。如何突破這些難點(diǎn)呢?本人結(jié)合高三數(shù)學(xué)復(fù)習(xí)實(shí)踐,歸納出幾種常見的解題策略。
一、間接法
對(duì)于一些有限制條件的問題,先以總體考慮,再把不符合條件的所有情況排除,這是解決排列組合應(yīng)用題的一種常用策略。
例1.四面體的頂點(diǎn)和各棱中點(diǎn)共有10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),不同的取法共有(?搖?搖)。
A.150種 B.147種 C.14種 D.141種
分析:在這10個(gè)點(diǎn)中,不共面的不易尋找,而共面的容易找。故采用間接法,由10個(gè)點(diǎn)中取出4個(gè)點(diǎn)的組合數(shù)C410減去4個(gè)點(diǎn)共面的個(gè)數(shù)即為所求,4點(diǎn)共面的情形可分三類:第一類,四面體每個(gè)面中的四個(gè)點(diǎn)共面,共有4×C46=60種;第二類,四面體的每2組對(duì)棱的中點(diǎn)構(gòu)成平行四邊形,則這四點(diǎn)共面,共有3種;第三類,四面體的一條棱上三點(diǎn)共線,這三點(diǎn)與對(duì)棱中點(diǎn)共面,共有6種。故4點(diǎn)不共面的取法有C410-(4C46+6+3)=141種。
二、分類
某些問題的處理可分成若干類,則可用分類計(jì)數(shù)原理分類處理,但要注意不重不漏,即:每?jī)深惖慕患癁榭占懈黝惖牟⒓癁槿?,否則容易出現(xiàn)遺漏和重復(fù)選取的錯(cuò)誤。
例2.已知集合A和集合B各含12個(gè)元素,A∩B含有4個(gè)元素,試求同時(shí)滿足下面的兩個(gè)條件的集合C的個(gè)數(shù):
(1)C?奐A∪B,且C中含有3個(gè)元素
(2)C∩A≠?覫(?覫表示空集)
分析:由題意知,屬于集合B而不屬于集合A元素個(gè)數(shù)為12-4=8,因此滿足條件(1)、(2)的集合C可分三類,故所求集C的個(gè)數(shù)是C112C28+C212C18+C312=1084。
三、插空法
某些元素不能相鄰或要在某特殊位置時(shí)可采用插空法,即先安排好沒有限制條件的元素,然后將有限制條件的元素按要求插入排好的元素間。
例4?搖.要排一個(gè)有6個(gè)歌唱節(jié)目和4個(gè)舞蹈節(jié)目的演出節(jié)目單,任何兩個(gè)舞蹈節(jié)目不相鄰,問有多少種不同排法?
分析:先將6個(gè)歌唱節(jié)目排成一排,6個(gè)歌唱節(jié)目排好后包括兩端共有7個(gè)“間隔”可以插入4個(gè)舞蹈節(jié)目,故共有A47·6!=604800種不同排法。
四、捆綁法
把相鄰的若干特殊元素“捆綁”為一個(gè)“大元素”,然后再與其余“普通元素”全排列,最后再“松綁”,將特殊元素在這些位置上全排列,即“捆綁法”。
例5.?搖A、B、C、D、E五人并排站成一排,如A、B必相鄰且B在A右邊,那么不同排法有(?搖?搖)。
A.24種 B.60種 C.90種 D.120種
分析:將特殊元素A、B按B在A的右邊“捆綁”看成一個(gè)大元素,與另外三個(gè)元素全排列A44,由A、B不能交換,故不再“松綁”,選A。
五、消序
例8.有4個(gè)男生,3個(gè)女生,高矮互不相等,現(xiàn)將他們排成一行,要求從左到右,女生從矮到高排列,有多少種排法?
分析:先在7個(gè)位置上任取4個(gè)位置排男生,剩余的3個(gè)位置排女生,因要求“從矮到高”,只有1種排法,故共有A47·1=840種。
六、投信問題
解決“允許重復(fù)排列問題”要注意區(qū)分兩類元素:一類元素可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“信”,能重復(fù)的元素看作“郵筒”,再利用分布計(jì)數(shù)原理直接求解的問題稱為“投信問題”。
例9?搖.七名學(xué)生爭(zhēng)奪五項(xiàng)冠軍,獲得冠軍的可能的種數(shù)有(?搖?搖)。
A.75 B.57 C.A57 D.C57
分析:因同一學(xué)生可同時(shí)奪幾項(xiàng)冠軍,故學(xué)生可重復(fù)排列,將七名學(xué)生看作七個(gè)“郵筒”,五項(xiàng)冠軍看作5封“信”,每封“信”有7種投法,由分步計(jì)數(shù)原理原理得75種,選A。
對(duì)此類問題,常有疑惑:為什么不以五項(xiàng)冠軍作為五個(gè)“郵筒”呢?因?yàn)閹讉€(gè)學(xué)生不能同時(shí)奪得同一冠軍,即冠軍不能重復(fù)。
七、構(gòu)造
在解與立體幾何知識(shí)綜合的應(yīng)用題時(shí),認(rèn)真分析問題的幾何特征,充分揭示問題的幾何聯(lián)系,構(gòu)造幾何圖形也是一種常見的求解途徑。
例10?搖.對(duì)正方體的8個(gè)頂點(diǎn)作兩兩連線,其中成異面直線的有(?搖?搖)。
A.156對(duì) B.174對(duì) C.192對(duì) D.210對(duì)
數(shù)學(xué)分析論文 數(shù)學(xué) 數(shù)學(xué)家論文 數(shù)學(xué)建模 數(shù)學(xué)初一論文 數(shù)學(xué)物理論文 數(shù)學(xué)簡(jiǎn)史論文 數(shù)學(xué)思維論文 數(shù)學(xué)創(chuàng)新教學(xué) 數(shù)學(xué)初二論文 紀(jì)律教育問題 新時(shí)代教育價(jià)值觀