前言:本站為你精心整理了矩形數(shù)學(xué)教案范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
教學(xué)建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是非凡的平行四邊形,非凡之處就是“有一個角是直角”,因而就增加了一些非凡的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是非凡的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。假如得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,經(jīng)常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注重以下問題:
1.矩形的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行預(yù)備或由學(xué)生預(yù)備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3.假如條件答應(yīng),教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖430所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的把握更輕松些.
4.在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先預(yù)備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5.由于矩形的性質(zhì)定理證實比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證實.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解把握,教師要注重題目的層次安排。
矩形教學(xué)設(shè)計
教學(xué)目標(biāo)
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運用以上性質(zhì)進行簡單的證實和計算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會非凡與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上“四邊形”和“平行四邊形”的字樣來說明這種關(guān)系:即平行四邊形是非凡的四邊形,又具有一般四邊形的一切性質(zhì);具有一些非凡的性質(zhì)。
小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學(xué)里已學(xué)過)等非凡性質(zhì),那么,假如在圖4.51中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.52,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的非凡情況,這時的圖形是什么圖形(矩形)。
問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?
說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學(xué)生能正確地給出矩形的定義。
問題2:矩形是非凡的平行四邊形,它除了“有一個角是直角”以外,還可能具有哪些平行四邊形所沒有的非凡性質(zhì)呢?
說明與建議:讓學(xué)生分組探索,有必要時,教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形“有一個角是直角”矩形的四個角都相等(矩形性質(zhì)定理1),要學(xué)生給以證實(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出“矩形的鄰邊互相垂直”的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。
學(xué)生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證實,得出性質(zhì)定理2。
問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說明與建議:(1)讓學(xué)生先觀察圖4.53,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證實:
證實:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。
,AO=CO
∴在Rt△ABC中,BO是斜邊AC上的中線,且。
∴直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:
如圖4.5-4,欲求對角線BD的長,由于∠BAD=90°,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件∠AOD=120°出發(fā),應(yīng)用矩形的性質(zhì)可知,∠ADB=30°,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么非凡的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
∴AC=BD(矩形的對角線相等)。
又。
∴OA=BO,△AOB是等腰三角形,
∵∠AOD=120°,∴∠AOB=180°120°=60°
∴∠AOB是等邊三角形。
∴BO=AB=4cm,
∴BD=2BO=24×4cm=8cm。
例2:(補充例題)
已知:如圖4.5-5四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,EF平分∠BED交BD于點F。
(l)猜想:EF與BD具有怎樣的關(guān)系?
(2)試證實你的猜想。
解:(l)EF垂直平分BD。
(2)證實:∵∠ABC=90°,點E是AC的中點。
∴(直角三角形的斜邊上的中線等于斜邊的一半)。
同理:。
∴BE=DE。
又∵EF平分∠BED。
∴EF⊥BD,BF=DF。
說明:本例是一道不給出“結(jié)論”,需要學(xué)生自己觀察猜想討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。假如學(xué)生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導(dǎo),這種練習(xí),重要的不是猜對了沒有?證實了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能能從復(fù)雜圖形中分解出如圖4.56所示的三個基本圖形。
課堂練習(xí)
1.課本例1后練習(xí)題第2題。
2.課本例1后練習(xí)題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對邊平行且相等
四個角都是直角
對角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。
作業(yè)
l.課本習(xí)題4.3A組第2題。
2.課本復(fù)習(xí)題四A組第6、7題。